The Wetland Lens: Private and Public Drivers for Investment

John K. Pattison-Williams, Ph.D, P.Ag

Pattison Resource Consulting Ltd.

University of Alberta

Guiding Questions

1) What is the lens with which we view wetlands?

2) What drives how wetlands are valued?

3) What drives producer decision-making?

4) What are acceptable reasons for farmers to accept BMP or wetland regulation?

Biophysical values: Constructed

Shoreline slope

Chloride

Nitrate + nitrite

Env. stress

Perceived social values:

Aesthetics

Flood control

Cultural heritage

Natural

Biophysical values:

Nutrients

Hydrograph

Groundwater connectivity

Native biodiversity

Biotic integrity

Perceived social values:

Biodiversity

Erosion control

Water quality improvement

Groundwater recharge

Agricultural

Perspectives on Wetland Services in Central Alberta

Case Study: Smith Creek, Saskatchewan

$$PV = \sum_{t=1}^{T} \frac{TC_i^t}{(1+r)^t}$$

Flooding Only

Suite of Ecosystem Services

Environmental Farm Plans (EFP)

Participation Rates

Reasons for Not Adopting

Conclusions

- Our lenses are different but not that different.
 Communication and education is essential.
- ➤ Wetlands are incredibly valuable ecosystems from economic, social and environmental perspectives. Public demand drives valuation approaches.
- Farmers are driven by economic incentives which often trump other values, whether they want them to or not.
- Private costs and public benefits can align through regulation and market based incentives.

Acknowledgements and References

Thank you to the Prairie Habitat Joint Venture (PHJV) and the Institute for Wetland and Waterfowl Research(IWWR) for their support.

- Cortus, B.G., Jeffrey, S.R., Unterschultz, J.R., Boxall, P.C., 2011. The Economics of Wetland Drainage and Retention in Saskatchewan. Can. J. Agric. Econ. 59, 109–126. doi:10.1111/j.1744-7976.2010.01193.x
- Eagle, A.J., Rude, J., Boxall, P.C., 2016. Agricultural support policy in Canada: What are the environmental consequences? Environ. Rev. 24, 13–24. doi:10.1139/er-2015-0050
- Packman, K.A., 2010. Investigation of Reverse Auctions for Wetland Restoration in Manitoba.
 Upublished MSc Thesis, University of Alberta.
- Pattison-Williams, J.K., Pomeroy, J.W., Badiou, P., Gabor, S., 2018. Wetlands, Flood Control and Ecosystem Services in the Smith Creek Drainage Basin: A Case Study in Saskatchewan, Canada. Ecol. Econ. 147, 36–47. doi:10.1016/J.ECOLECON.2017.12.026
- Rooney, R.C., Foote, L., Krogman, N., Pattison, J.K., Wilson, M.J., Bayley, S.E., 2015. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values. Water Res. 73, 17–28. doi:10.1016/j.watres.2014.12.035
- Statistics Canada, 2013. Farm Environmental Management Survey: Results [WWW Document]. Gov. Canada. URL http://www.statcan.gc.ca/pub/21-023-x/2013001/part-partie1-eng.htm (accessed 11.27.17).
- Tyrchniewicz, A., Tyrchniewicz, E., 2007. Alternative Land Use Services (ALUS) A Preliminary Overview of Potential Cost Reductions and Financial Benefits to Canada.

Questions

